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T his paper is motivated by observing that an increasing number of firms are offering modular products assembled
with multiple option choices for the consumer. Starting with the PC offerings by Dell which allowed (and still

allows) users to configure their product by choosing among multiple choices for each option, the current market place
seems to have evolved to a make-to-stock scenario where Apple offers its IPAD series with multiple models each with a
unique storage size, color, and wireless chip technology. The focus of our work is on determining the optimal stocking
level of modular end-products. Our analysis is based on a benchmark model with the aim of maximizing expected profit
subject to an aggregate fill rate constraint as well as variant-specific individual fill rates under a make-to-stock setting. To
further assess the robustness of our finding, we consider the extensions of correlated market preferences over options,
price-dependent demand, and alternative probability distributions for characterizing uncertainty in market preferences or
aggregate demand. Finally we also show how to extend the single period model into a multiple-period setting. Through
extensive computational analysis, we find that more precise estimates of market preferences for various modular options
constitute extremely valuable information that goes beyond the usefulness of forecasts of aggregate market demand. From
a practical perspective, this might be indicative of another classic marketing-operations trade-off. Offering more options
for consumers would be preferred by marketing managers since this would reach more consumers and hence, enhance
product sales. On the other hand, the ability to obtaining greater forecast accuracy would decline when the number of
options increase. Hence, from an operational perspective, it would be preferred to limit option choices (so that better fore-
casts can be obtained) since this would lead to lower stocking costs and hence, higher profits.
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1. Introduction

Consider the following scenario:

Tablet computers in the iPad series include
several different models based on different
combinations of storage size and wireless chip
technology. For expositional purposes, assume
that an iPad can be assembled using three com-
ponents: (a) Component 1 is the case color
which is either White or Black; (b) Component 2
is the wireless chip Wi-Fi Only, or Wi-Fi
together with 3G; and (c) Component 3 is the
storage size which is either 16GB, 32GB, or
64GB. There are 12 distinct end-products, each
equipped to deliver a specific level of function-
ality, that can be assembled based on the case
color (component 1), wireless chip technology
(component 2), and storage size (component 3).

This example reflects the trend toward the prolifer-
ation of product variants stemming from a need to
capture niche customer segments and increase market
share. Advances in production technologies have eve-
ned out differentials in product quality, and shifted
the focus from mass production—with the virtues of
low cost, efficiency, and consistent quality—to mass
customization. Modularity is one of the keys to suc-
cessful mass customization (Eggen 2003). As in mass
production, mass customization achieves cost savings
from the scale economies of repetitive manufacturing
of each of the parts or modules that make up the mod-
ular end product. There may also be additional indi-
rect sources of cost savings, such as greater reliability
stemming from the use of common components that
are reused over time and incrementally improved
with each reuse, and reduced service costs and claim
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costs associated with modular new product introduc-
tions (Sanchez and Mahoney 2002). Modular product
architectures also permit faster technological upgrad-
ing and greater speed to market, since an innovation
in a single module has a multiplicative effect through
the manifold potential combinations of each module
with several others in creating the end-product. How-
ever, one should note that modularity also bounds the
extent to which customization can be achieved and is
not a substitute for pure customization. Further, a
modularization strategy taken too far may result in
brand cannibalization and customer confusion about
the hierarchy of related product offerings; in such
cases an integral product architecture is a better solu-
tion (Eggen 2003).
From an operational perspective, modularity cre-

ates unique challenges since a gamut of day-to-day
decisions supporting product variety, ranging from
manufacturing and service delivery to logistics, must
be carefully planned. Ramdas (2003) points out that
high variety can “increase demand variability and
forecast errors” leading to the classic syndrome of
market mismatch: cycles of excess inventory alternat-
ing with cycles of shortage. Determining the optimal
stocks for a large number of the individual end-prod-
uct variants (12 in the opening example in the present
paper) is not simple since the aggregate product
demand (in this case, for the iPad) and the preferences
of consumers for each component option (e.g., the
storage options—16GB, 32GB, or 64GB) are both
uncertain parameters whose estimates are subject to
forecast error. Ramdas (2003) also points to demand
forecasting in the context of the combinatorial explo-
sion of product variety resulting from modularization
as an important untapped research area.
In this paper, we study the problem of determining

optimal stocks of the end-product variants in a single
product family from the perspective of a retailer or
distributor. Shelf-space in retail stores is scarce, and it
is vital for a retailer to right-size inventory investment
without compromising service levels. The focus of
our research is on determining optimal stocking levels
for a suite of modular products in the face of two
distinct sources of uncertainty: random aggregate
product demand spanning all possible modular
combinations, and unknown market preferences for
various options at the level of an individual module.
These two sources of uncertainty are pinpointed by
Ramdas (2003), who states that “when introducing a
new product category there is uncertainty about
aggregate demand for the new category, as well as
the demand for specific varieties within the category.”
Our model maximizes expected profit subject to two
classes of service level constraints: an aggregate
end-product fill rate constraint, as well as individual
variant-specific fill rate constraints. Our most detailed

results are for a single period model, but we carry out
an extension to an infinite horizon model with com-
plete backlogging and non-zero replenishment lead
time. The infinite horizon model may be used to make
stocking decisions over a finite rolling horizon with
positive replenishment lead time.
The remainder of this paper is structured as follows.

In the next section, we give a brief overview of the rel-
evant literature and position our paper with respect to
it. Section 3 presents the general single-period model
and the associated analytics, and applies it to the iPad
series assembly stocking problem. In section 4 using
an extensive numerical analysis, we provide insights
about the interplay between modularity, market pref-
erences, and service levels in planning a stocking
assortment. Section 5 presents an extension of the
benchmark model including correlated preference
over options, price-dependent demand, alternative
probability distributions for characterizing uncer-
tainty in market preferences or aggregate demand,
and an infinite horizon setting with positive lead time.
In section 6, we briefly reprise the main contributions
of this paper and point out some of the limitations of
our analysis.

2. Literature Review and Positioning

Our paper has points of contact with three distinct
streams of literature, but it also deviates from the pro-
totypical papers in each stream in some essential
features. We shall attempt to carefully define the
boundaries of each relevant literature stream so that
the positioning of our paper against this backdrop is
clearly marked out.
First, we consider the setting and objectives of a

stream of research on inventory policies for stochastic
assembly systems. The objective of research in this
category is to determine the optimal stocks of the
components of a modular product subject to random
aggregate demand. For a given realization of demand
for a set of products, the problem of assigning compo-
nents to end-products is in principle a stand-alone
deterministic optimization problem. However, when
demand is random and component stocks have to be
planned before demand realizes, the difficulty of
determining optimal component stocks a priori esca-
lates significantly and generally takes the form of a
two-stage stochastic optimization problem with
recourse. For example, Thomas and Warsing (2007)
study a periodic, order-up-to system for a single
product assembled from multiple components. In the
first stage, stocking decisions must be made with
respect to components and assembly. At the recourse
stage, decisions must be made regarding assembly
and disassembly actions and allocation of inventories
to demands. Shortage costs are charged, rather than
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imposing service level constraints. Chod et al. (2010)
is another noteworthy recent paper in this stream of
research.
Our work intersects research on assemble-to-order

(ATO) systems in that our focus is also on a set of
modular products. However, in contrast to the cited
literature, we are concerned with the stocks of end
product variants that must be planned ahead of
customer demand realizations, and thus, demand is
satisfied later when it is realized (i.e., our setting is
make-to-stock rather than assemble to order). There-
fore, we are concerned with the individual modules
making up the end-product only from the point of
view of requiring a forecast of end-product demand.
Frequently, it is the case that the demand for an
end-product may be developed from information
about consumer preferences for option choices at the
level of a product module. However, we are not
concerned with planning component stocks, or with
optimally configuring specific sets of end-product
variants from a given base of components. These are
important problems that belong upstream in the
supply chain.
Baker et al. (1986) present a simple model for an

ATO setting to explore product commonality issues.
Their product structure is somewhat similar to ours
in the sense that there are two end products, each
assembled from two components. The authors com-
pare the case when each product has two unique com-
ponents with the case in which the products each
have one unique component and a common compo-
nent. The demand for each product is assumed to be
independent and uniform. The problem is to choose
the component stock levels to minimize the total num-
ber of components stocked subject to an aggregate
service level constraint, whereby the probability of
meeting the demand of both products jointly is no
smaller than an exogenously specified threshold
value. In contrast, our model enjoins fill rate con-
straints rather than type-1 service level constraints;
we impose individual as well as aggregate service
level constraints; and our product is assembled using
one option chosen for each component rather than the
single option for each component in their setting.
Bertsimas and Paschalidis (2001) study optimal

production and sequencing decisions a multiple-
product make-to-stock manufacturing system, via a
fluid model analyzed with tools from large deviations
theory. Demand is met from the available finished
goods inventory or backordered if there is a shortage.
The objective is to find a production policy that mini-
mizes finished goods inventory costs and guarantees
that the steady-state stock-out probabilities for each
product exceed a threshold.
A second stream of research pertains to the multi-

ple-product newsvendor problem. We refer the

reader to Turken et al. (2012) for a comprehensive
review of research on this problem. Whereas the set
up of the multiple-product newsvendor problem is a
single period, Aviv and Federgruen (2001)—among
other authors—study capacitated multiple-product
inventory systems in an infinite horizon framework.
Our paper resembles the multi-product newsvendor
model in that we choose the stocking levels of a num-
ber of products each with random demand. However,
the demands of the products for which we must make
stocking decisions are inter-related by the underlying
modular structure of the products. Furthermore, we
impose multiple fill rate constraints whereas much of
the research on the multi-product newsvendor model
operates with budget constraints.
We also extend our single-period model to an infi-

nite horizon, or equivalently, to a rolling horizon
model in which the effect of non-zero replenishment
lead time on optimal stocking levels can be studied.
Of course, replenishment lead time is not modeled in
the multi-product newsvendor model. Van Mieghem
and Rudi (2002) introduced the notion of newsvendor
networks, a class of models that generalize the stan-
dard newsvendor model by allowing for multiple
products and multiple inputs with an arbitrary bill-
of-materials structure. These models result in stochas-
tic programming problems with recourse, and in this
sense they may be viewed as an extension of ATO
models. Bish et al. (2012) models a newsvendor net-
work problem in which capacity levels must be deter-
mined under uncertain demand; once demand
realizes, prices and production levels must be set.
Unlike Van Mieghem and Rudi (2002), prices are
endogenous.
A third stream of research pertains to the study of

service-level constrained inventory models. The liter-
ature has classified inventory service levels into the
following three categories: a-service-level, b-service-
level and c-service-level. a-service-level, also called
Type 1 service level, is the fraction of cycles in which
a stockout does not occur. A stockout occurs when
demand arrives and there is no inventory available to
satisfy that demand immediately. There exists a vari-
ant of a-service-level, which is called ready rate.
Ready rate denotes the probability that an arbitrarily
arriving customer order will be completely served
from stock. b-service-level, also called Type 2 service
level and fill rate, denotes the expected fraction of
demand served immediately from stock. We focus on
studying fill rate through the rest of this paper since
this is the metric that most managers use to measure
service level (Nahmias 2008). c-service-level is a less
common service level but closely related to the fill
rate. Schneider (1981) has provided an exceptional
review of these three inventory service levels under
different replenishment policies. Interested readers
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may also refer to Silver et al. (1998) who provide
additional characterizations of these service level
approaches with multiple illustrations for each
setting.
Fill rate is consistently defined as the average

fraction of demand that can be immediately satis-
fied from on-hand inventory (Cachon and Terwi-
esch 2008, Song 1998) in the operation management
literature. Fill rate is often computed as expected
demand satisfied per cycle, divided by expected
demand per cycle (this formula is equivalent as one
minus the expected back order per cycle divided
by expected demand per cycle). However, Chen
et al. (2003) first point out this formula only holds
when the demand is stationary and serially inde-
pendent over an infinite horizon. They go on to
also prove that the expected fill rate over a finite
performance review horizon with a fixed stocking
quantity is always greater than the expected fill rate
over an infinite performance review horizon. In a
follow-up paper, Banerjee et al. (2005) generalize
Chen et al.’s (2003) work by showing the expected
fill rate is monotonically decreasing in the review
horizon. Thomas (2005) uses Monte Carlo simula-
tion to study how the achieved fill rate behaves
over a range of different demand distributions and
review horizons. Katok et al. (2008) further investi-
gates this issue in a controlled laboratory setting
and conclude that longer review periods is more
effective than shorter ones at inducing service
improvements.
Several researchers have also studied fill rate in

periodic review systems with positive lead time. John-
son et al. (1995) provide the details of the derivation
of the classical fill rate formula and propose an exact
fill rate expression with the normal distribution. Sobel
(2004) derives a formula for fill rate under general
demand distributions for both single-stage and multi-
ple-stage supply chain systems. Zhang et al. (2007)
extend Sobel’s (2004) work to the general periodic
review policy where the inventory position is
reviewed once every R periods for single-stage and
two-stage inventory systems. Teunter (2009) has
derived the same expression for the fill rate in Zhang
et al. (2007) by using an alternative approach.
Recently, Guijarro et al. (2012) has developed a gener-
alized method to compute the fill rate with lost sales
and discrete demand distribution in a periodic review
policy. The focus of all the above works is on charac-
terizing the fill rate in a single or multistage inventory
system over an infinite horizon.
Finally, we mention Paul and Vakharia (2006),

where the focus is on determining optimal compo-
nent levels to minimize total expected cost subject to
a pre-set probability that all aggregate end-product
demand is met (type-1 service level). The current

model is different in that we maximize expected
profit subject to individual fill rates for each product
variant as well an aggregate fill rate for all the
products together, motivated by two observations in
particular: (a) fill-rates are far more common than
type-one service levels in industry practice; and (b) it
is vital to track service level at the individual product
level when we make stocking decisions for a set of
related product variants. Analytically, the stochastic
dependence between numerator and denominator
makes fill rate constraints particularly challenging in
a stochastic inventory model. The change in service
level measure changes the analytics of the problem
drastically and calls for a completely different solu-
tion approach. Further, in Paul and Vakharia (2006)
much effort is expended in exploring and proving
structural results, many of which are limited to the
special case of two options per component. The cur-
rent paper takes a more comprehensive approach in
the sense that industry cost and pricing data are
used to generate extensive computational results
under different scenarios, and we mine the output
for insights on the interaction between demand vari-
ability, option choice, and individual and aggregate
service levels.

3. Benchmark Model

We consider a family of product variants in a given
modular product family, with random total demand
D in a single period. Each individual product variant
is assembled by choosing a specific option from each
module; all the products are configured from the
same set of modules and differ from one another in
the chosen options from one or more modules. Each
module is functionally a sub-assembly, but we prefer
to use the term module here since we do not model
the assembly process and the associated decision
making. Let Ai (i = 1, . . ., M) represent each module
and suppose there are Ni (ni ¼ 1; . . .; Ni) options for
each module indexed as Ai

ni
. This implies that there

are potentially
QM

i¼1 Ni different end-product variants.
The market preferences for customers for each option
Ai

ni
within module Ai (i = 1, . . ., M) are random, and

are represented by proportions Pi
ni

(for i = 1, . . ., M;
0 � Pi

ni
� 1 and

PNi

ni¼1 P
i
ni

¼ 1). The market prefer-
ences are general random variables taking values in
[0,1], and are assumed to be independent across mod-
ules in the benchmark model.1 We use the term “mar-
ket preferences” rather than ”choice probabilities”
because we want to connote that a market preference
is an aggregate measure summarizing the choices of a
large number of consumers in the market. Figure 1
illustrates a specific example where the market
demand for product using options A1

2, A
2
3, A

3
1 and A4

3

is DP1
2P

2
3P

3
1P

4
3, where D denotes the aggregate

Paul, Tan, and Vakharia: Planning for Modular Products
1036 Production and Operations Management 24(7), pp. 1033–1053, © 2015 Production and Operations Management Society



demand. Our approach of modeling consumer prefer-
ences over the levels, or variants, of an SKU attribute
(such as storage size levels of an iPad in GB) is
standard in the marketing research literature (e.g.,
Fader and Hardie 1996, where consumer preferences
for SKU attributes of packaged consumer goods are
modeled).
Let cn1;n2;...nM and kn1;n2;...nM represent the unit cost

and unit price, respectively, of a product variant with
options A1

n1
A2

n2
. . .AM

nM
. We enjoin an aggregate fill rate

constraint for the entire product family as follows:

E
# of units of demand satisfied from stock

# of units of aggregate demand

� �
� b

ð1Þ
and we also impose individual fill-rate constraints,
one for each end-product variant:

E
# of units of demand satisfied from stock

# of units of specific product demand

� �
�bn1;n2;...nM

ð2Þ
Our decision variables are the stocking levels of

each product variant Sn1;n2;...nM (8QM
i¼1 Ni different

end-product variants). The firm’s profit maximization
problem is as follows:

Maximize SP ¼E
XN1

n1¼1

XN2

n2¼1

. . .
XNM

nM¼1

kn1;n2;...nM

"

�MinðSn1;n2;...nM ;DP1
n1
P2
n2
. . .PM

nM
Þ
i

�
XN1

n1¼1

XN2

n2¼1

. . .
XNM

nM¼1

cn1;n2;...nMSn1;n2;...nM

ð3Þ
subject to:

E

PN1

n1¼1

PN2

n2¼1 ...
PNM

nM¼1MinðSn1;n2;...nM ;DP1
n1
P2
n2
...PM

nM
Þ

D

" #
�b;

ð4Þ

E
MinðSn1;n2;...nM ;DP1

n1
P2
n2
. . .PM

nM
Þ

DP1
n1
P2
n2
. . .PM

nM

" #
� bn1;n2;...nM ;

8n1; n2; . . .nM
ð5Þ

Sn1;n2;...nM � 0: 8n1; n2; . . .nM ð6Þ
The objective function (Equation 3) assesses the net

profit for the firm, with the first term capturing the
expected revenue from the sale of all product
variants and the second term representing the
procurement cost. The first constraint (Equation 4)
requires that a minimum aggregate fill rate b be met.
There are

QM
i¼1 Ni individual fill rate constraints, one

for each product variant, specifying the minimum
expected fill rates required for each product. Each set
of minimum fill rates is associated with a specific
optimal profit. The fill rate constraints are critical in
our setting because fill rates are important to retailers
or distributors, although they are difficult to measure
accurately (see Sobel (2004) for many examples of
retailers emphasizing the importance of maintaining
high fill rates). Further, these fill rate constraints
obviate the need to include goodwill costs, which are
theoretically appealing but hard to ascribe a dollar
value to.

3.1. Random Preferences and Random Aggregate
Demand
We start by first reducing this model to a tractable
algebraic form. The preferences for module i are rep-
resented by Ni distinct random variables, each taking
values in [0,1], and adding up to 1. We generate these
Ni random variables as follows. First we generate
Ni � 1 independent and identically distributed ran-
dom variables U1; . . .; UNi�1 each with support [0,1].
Let ðV1; . . .; VNi�1Þ denote the order statistics
obtained by arranging the Ui’s in ascending order.
Define V0 :¼ 0 and VNi

¼ 1. The random variables
Di ¼ Vi � Vi�1 for 1 � i � Ni are said to be the spac-
ings from the random sample U1; . . .; UNi�1. We
represent market preferences for modular options by

Figure 1 An Example of Modules and Options in a Modular Production System
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spacings. We remark that with this model every
realization of market preferences results in different
probabilities across modular options, since the proba-
bilities are generated by negatively correlated contin-
uous random variables. In this sense, the spacings
model of market preferences across modular options
captures heterogeneous market preferences across the
variants of every module.
Pyke (1965) is a classic source for technical details

regarding spacings. The distribution function of each
spacing from a sample of n independent [0,1] ran-
dom variables can be characterized. Based on this,
the distribution function of P1

n1
P2
n2
. . .PM

nM
—which we

denote by Gn1;n2;...;nMðxÞ—and the distribution func-
tion of DP1

n1
P2
n2
. . .PM

nM
—which we denote by

Hn1;n2;...;nMðxÞ—can be found, if the distribution of
aggregate demand N is known. We denote 1 � F(x)
by F(x), for any distribution function F(x). Then the
objective function

E
XN1

n1¼1

XN2

n2¼1

...
XNM

nM¼1

kn1;n2;...nMMinðSn1;n2;...nM ;DP1
n1
P2
n2
...PM

nM
Þ

" #

�
XN1

n1¼1

XN2

n2¼1

...
XNM

nM¼1

cn1;n2;...nMSn1;n2;...nM

reduces to

XN1

n1¼1

XN2

n2¼1

. . .
XNM

nM¼1

kn1;n2;...nM

Z Sn1 ;n2 ;...nM

0

Hn1;n2;...;nMðxÞdx

�
XN1

n1¼1

XN2

n2¼1

. . .
XNM

nM¼1

cn1;n2;...nMSn1;n2;...nM ð7Þ

Next, we derive an expression for aggregate fill
rate. Our method is to first find the conditional
expectation of aggregate fill rate given D = n, and
then uncondition by integrating with respect to the
distribution of D. Let gDðxÞ denote the density func-
tion of aggregate demand, with support [A,B]. The
conditional expectation of aggregate fill rate given
D = n is

E

PN1

n1¼1

PN2

n2¼1 . . .
PNM

nM¼1MinðSn1;n2;...nM ;nP1
n1
P2
n2
. . .PM

nM
Þ

n

" #

which reduces to

XN1

n1¼1

XN2

n2¼1

. . .
XNM

nM¼1

R Sn1 ;n2 ;...nM
0 H

;

n1;n2;...;nM
ðxÞdx

n

where H0 indicates the distribution function of
nP1

n1
P2
n2
. . .PM

nM
. Now we uncondition, to obtain the

following expression for the aggregate fill rate:

Z B

A

gDðyÞ
y

� � XN1

n1¼1

XN2

n2¼1

...
XNM

nM¼1

Z Sn1 ;n2 ;...nM

0

Hn1;n2;...;nMðxÞdx
" #

dy

ð8Þ
Finally, we derive a formula for individual expected
fill rate. We define

Xn1;...;nM :¼ DP1
n1
P2
n2
. . .PM

nM

and let Hn1;...;nMðxÞ, hn1;...;nMðxÞ and denote its distri-
bution function and density function, respectively.
We note that each individual expected fill rate

E
MinðSn1;n2;...nM ;Xn1;...;nMÞ

Xn1;...;nM

� �

can be simplified via conditioning to take the form

E
MinðSn1;n2;...nM ;Xn1;...;nMÞ

Xn1;...;nM

jXn1;...;nM\Sn1;n2;...nM

� �
ProbðXn1;...;nM\Sn1;n2;...nMÞ

þ E
MinðSn1;n2;...nM ;Xn1;...;nMÞ

Xn1;...;nM

jXn1;...;nM � Sn1;n2;...nM

� �
ProbðXn1;...;nM � Sn1;n2;...nMÞ

which further simplifies to

Hn1;...;nMðSn1;n2;...nMÞ

þE
Sn1;n2;...nM
Xn1;...;nM

jXn1;...;nM�Sn1;n2;...nM

� �
Hn1;...;nMðSn1;n2;...nMÞ

¼Hn1;...;nMðSn1;n2;...nMÞ

þ
Z1

Sn1 ;n2 ;...nM

Sn1;n2;...nM
x

hn1;...;nMðxÞ
Hn1;...;nMðSn1;n2;...nMÞ

dxHn1;...;nMðSn1;n2;...nMÞ

¼Hn1;...;nMðSn1;n2;...nMÞþSn1;n2;...nM

ZN
Sn1 ;n2 ;...nM

hn1;...;nMðxÞ
x

dx

ð9Þ

This general model is intractable. In the next two
sub-sections, we provide explicit algebraic formu-
lations of the optimization problem for two special
cases—fixed aggregate demand coupled with ran-
dom market preferences, and fixed market prefer-
ences together with random aggregate demand.
We study these two special cases in detail. In the
rest of this study, we adopt the uniform distribu-
tion as our illustrating example for the following
reasons. First, it captures the situation where the
firm has no prior information of consumers’ pref-
erences for options and thus, it would be the
worst case forecast scenario. Second, the direction-
ality of our results still holds when we assume
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any other unimodal distribution for consumers
preferences for options (as we show in a later sec-
tion) and hence, this is not a very restrictive
assumption. Third, we do not propose any market
preference elicitation/estimation mechanism in our
study since this is not the focus of our paper.
Instead we simply assume that any such informa-
tion on preferences is such that these preferences
are uniformly distributed. Finally, the uniform
distribution is also appealing owing to its tracta-
bility.

3.2. Fixed Aggregate Demand and Random Market
Preferences
For ease of exposition, assume that each product in
the family is assembled using options from 3 modules
(i.e., M = 3), and there are two option choices avail-
able for modules 1 (i.e., A1

1 and A1
2) and 2 (i.e., A2

1 and
A2

2), while there are three option choices are available
for module 3 (i.e., A3

1, A
3
2, and A3

3). If the market pref-
erences P1

1 (and P2
1) are uniformly distributed (0,1)

random variables, then it follows that P1
2 ¼ 1 � P1

1

(P2
2 ¼ 1 � P2

1) are also uniformly distributed random
variables. We model the market preferences for A3

1,
A3

2, and A3
3 as the spacings from three independent

uniform [0,1] random variables. Since we are assum-
ing in this case that D is known (that is, the firm has a
fairly good forecast of the aggregate demand of the
entire product family), we let D = N.

3.2.1. Objective function. We need to derive an
expression for the expected value of each term

kn1;n2;...nMMin Sn1;n2;...nM ;NP1
n1
P2
n2
. . .PM

nM

� �
and then sum up all the terms. We obtain the
following expression for E½MinðSn1;n2;n3 ;NP1

n1
P2
n2
P3
n3
Þ�

(the details of the derivation are in the Appendix):

Sn1;n2;n3

12N
2

12N
2 � 15NSn1;n2;n3 þ 4S2n1;n2;n3

h

�6NSn1;n2;n3 ln
Sn1;n2;n3

N
ðln 1

N
þ ln Sn1;n2;n3 � 1Þ

�

Substituting into Equation (7), we have an explicit
expression for the objective function.

3.2.2. Aggregate fill rate. The aggregate fill rate
constraint can be written as

XN1

n1¼1

XN2

n2¼1

. . .
XNM

nM¼1

Z Sn1 ;n2 ;...nM

0

H
0
n1;n2;...nM

ðxÞdx� bN ð10Þ

where H0
n1;n2;...;nM

ðxÞ denotes the distribution function

of DP1
n1
P2
n2
. . .PM

nM
. We use the expression already

derived for H0
n1;n2;...nM

ðxÞ in the Appendix and substi-

tute the resulting expression for H
0
n1;n2;...nM

ðxÞ into

expression (8). After some rather laborious algebraic
manipulation, the aggregate fill rate can finally be
restated in the form:

X2
n1¼1

X2
n2¼1

X3
n3¼1

Sn1;n2;n3

12N
3

12N
2�15NSn1;n2;n3

h

�6NSn1;n2;n3ðln
1

N
þ lnSn1;n2;n3 �1Þ lnSn1;n2;n3

N
þ4S2n1;n2;n3 �

3.2.3. Individual fill rates. Let Z :¼ DP1
n1
P2
n2
. . .

PM
nM
. Specializing the expression derived in the gen-

eral case we get

E
MinðSn1;n2;n3 ;ZÞ

Z

� �
¼H0

n1;n2;...;nM
ðSn1;n2;n3Þ

þE
Sn1;n2;n3

Z
jZ�Sn1;n2;n3

� �
H

0
n1;n2;n3

ðSn1;n2;n3Þ

¼H0
n1;n2;...;nM

ðSn1;n2;n3ÞþSn1;n2;n3

Z N
0

Sn1 ;n2 ;n3

h0n1;n2;n3ðxÞ
x

dx

¼
Sn1;n2;n3 3Sn1;n2;n3þ6NlnN�Nð6lnSn1;n2;n3þln3Sn1 ;n2 ;n3

N
Þ

h i
3N

2

ð11Þ

3.3. Fixed Market Preferences and Random
Aggregate Demand
Let P1

n1
¼ p1n1 , P2

n2
¼ p2n2 , . . ., PM

nM
¼ pMnM . Then to

achieve a minimum aggregate fill-rate b the constraint
in Equation (4) can be stated as:

E

PN1

n1¼1

PN2

n2¼1 ...
PNM

nM¼1MinðSn1;n2;...nM ;Dp1n1p
2
n2
...pMnMÞ

D

" #
�b

ð12Þ

We make an extensive study of the case where
aggregate market demand D is uniformly distributed
over [0,N].2 The support of Np1n1p

2
n2
. . . pMnM is

½0;Np1n1p
2
n2
. . .pMnM �. After some algebraic drudgery—the

details of which we omit—the aggregate fill rate con-
straint (4) reduces to

XN1

n1¼1

XN2

n2¼1

. . .
XNM

nM¼1

Sn1;n2;...;nM
N

1þ ln
Np1n1p

2
n2
. . .pMnM

Sn1;n2;...;nM

 !
� b

ð13Þ
Following the same method we used to

derive the individual fill rate constraints in the
previous sub-section, we simplify Equation (5) as
follows:
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Sn1;n2;...;nM
Np1n1p

2
n2
. . .pMnM

1þ ln
Np1n1p

2
n2
. . .pMnM

Sn1;n2;...;nM

 !
� bn1;n2;...;nM

8n1; n2; . . .; nM
ð14Þ

We again assume that the product family is assem-
bled using options from three modules (i.e., M = 3).
There are two option choices available for modules 1
(i.e., A1

1 and A1
2 with p11 þ p12 ¼ 1) and 2 (i.e., A2

1 and
A2

2 with p21 þ p22 ¼ 1) while three option choices are
available for module 3 (i.e., A3

1, A3
2, and A3

3 with
p31 þ p32 þ p33 ¼ 1). Then if we assume that D is uni-
formly distributed in the interval [0,200] (i.e., the
mean aggregate demand for the product family is
100), Equation (13) simplifies to:

X2
n1¼1

X2
n2¼1

X3
n3¼1

Sn1;n2;n3
200

1þ ln
200p1n1p

2
n2
p3n3

Sn1;n2;n3

 !
� b

8n1; n2;n3
ð15Þ

We simplify Equation (14) as

Sn1;n2;n3
200p1n1p

2
n2
p3n3

þ Sn1;n2;n3
200p1n1p

2
n2
p3n3

ðln200p1n1p2n2p3n3 � lnSn1;n2;n3Þ

� bn1;n2;n3 8n1;n2;n3
ð16Þ

We get the following explicit expression for the
objective function under fixed market preference and
random aggregate market demand:

X2
n1¼1

X2
n2¼1

X3
n3¼1

kn1;n2;n3 Sn1;n2;n3 �
S2n1;n2;n3

400p1n1p
2
n2
p3n3

 !

�
X2
n1¼1

X2
n2¼1

X3
n3¼1

cn1;n2;n3Sn1;n2;n3 ð17Þ

We note the following structural results relating the
aggregate fill rate constraint to the individual fill rate
constraints, under symmetric and asymmetric market
preferences.

PROPOSITION 1. When market preferences for the options in
a given module are all equal (that is, preferences are symmetric
across module options), the arithmetic mean of expected
individual fill rates of the end-product variants is equal to the
expected aggregate fill rate. On the other hand, when market
preferences over the options are unequal (that is, preferences are
asymmetric across module options), the expected aggregate fill
rate is a convex combination of individual expected fill rates.

PROOF. See the Appendix. h

Fill rate is one of the most popular service levels
to measure the performance of inventory system by

practitioners. In practice, inventory managers are
often confronted with a need to consider the aggre-
gate fill rate constraint (De Schrijver et al. 2013). The
above proposition suggests that one can achieve a
good approximation of aggregate fill rate by focusing
on the individual item fill rate when they have a
good estimate on consumer preference over different
functionalities of modular products. It is also note-
worthy to point out that this proposition easily gen-
eralizes to the case when there are arbitrarily many
modules, and an arbitrary number of options in each
module.
Suppose we have very little information on con-

sumer preferences for option. In this case, it might be
obvious that the expected aggregate fill rate should
be equal to some convex combination of expected
individual fill rates. However, our later analysis dem-
onstrates that this apparently mandatory relationship
is violated when market preferences are random.
Essentially, the expected aggregate fill rate is lower
than the convex combination of expected individual
fill rate.
In next section, we solve the algebraic models for

the iPad series in the motivating example with the aid
of the GAMS software package, over a wide range of
problem parameters and with price and cost data
obtained from secondary sources. The focus of our
numerical analysis is to obtain more insights into how
the parameter settings moderate the results for each
case.

4. General Insights from Numerical
Analysis

The results of the numerical analysis presented in this
section are focused around comparing the differences
in profits, total stocking levels, imputed aggregate
and individual fill rates for two specific cases: (a) mar-
ket preferences are random and aggregate demand
(D) is Known; and (b) market preferences are known
and aggregate demand (D) is random. In order to op-
erationalize the algebraic formulations for each of
these cases shown in the previous section, the cost
and pricing data for the iPad series example were
obtained from ISuppli (Rassweiler 2010). A summary
of these data is shown in Table 1.3 It is interesting to
note that the same iPad data were also used by Subra-
manian et al. (2013) to conduct numerical experi-
ments on their component commonality model. They
made the following caveat: “Although our choice of
iPads as an example may not be a perfect match with
our model assumptions . . . the publicly available
component breakdown and cost data . . . allows us to
demonstrate how our model can be used . . .. ” We
would like to emphasize that the same caveat applies
to our data too.
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The parameter settings in terms of consumer pref-
erences and aggregate demand for each case are as
follows:

• For the case of known D and random market
preferences: We arbitrarily set the value of
D = N = 100 and assumed that the market
preferences for options of components 1 and 2
were uniformly distributed random variables
in the interval [0,1] while the market prefer-
ences of the options of component 3 as uni-
form spacing random variables in the interval
[0,1].

• For the case of known market preferences and
random D: We experiment with different val-
ues for the preferences of modular options,
ranging from the perfectly balanced case (for
components 1 and 2, each option prefer-
ence= 1

2); and for component 3, each option
preference = 1

3) to an unbalanced situation
where preferences are price-sensitive and are
inversely proportional to price. Further, we
assume that D is uniformly distributed with
parameters [0,200].

Finally, the input parameters for the minimum
aggregate fill rate and minimum product variant
fill rates are varied for each set of results discussed
next.

OBSERVATION 1. Optimal Profits.

To compare optimal profits, we consider two
specific settings for the minimum aggregate fill rate
and minimum product variant fill rates. The first

setting is where these parameters are set to be very
small such that these constraints are never binding at
optimum while in the second case, we set the mini-
mum product variant fill rates to be 70% and vary the
minimum aggregate fill rate. The results are pre-
sented below in Table 2 and Figure 2 and in obtaining
these results preferences are set to be symmetric
across options.
As can be seen from Figure 2, when the fill rate con-

straints (aggregate and individual) are not binding, the
profits are approximately 2.5 times higher for the case
when market preferences are known and D is random
as compared to the case when market preferences are
random and D is known. A more pronounced differ-
ence in profits can be observed with the minimum fill
rate is set to be higher (in this case, all minimum indi-
vidual fill rates were set to 70% and the minimum
aggregate fill rate was varied in the range 40–70%) as
seen in Table 2. For example, given individual fill rates
of 70% and an aggregate fill rate of 60%, Table 2 shows
that the profits are about 3.8 times higher for the case
when market preferences are known and D is random
as compared to the case when market preferences are
random and D is known. Of course, greater profits are
also accompanied by higher stocks of product variants
but the difference in stocking levels for the two cases
in not as pronounced as the differences in profits. This
result implies that if the firm can obtain better esti-
mates of consumer preferences for options, there is the
potential to increase profits significantly (even if aggre-
gate demand is random).
The forecasting of consumers preferences for

options is a challenging task and this task is com-
pounded when the number of options offered is very
large. From a practical perspective, this implies that
there is a need to provide some balance between the
marketing focus to provide more consumer choice
through options against the operational issue of pre-
paring better accurate forecasts for such an increased
option set.

OBSERVATION 2. Imputed Aggregate and Product Vari-
ant Fill Rates.

Through Proposition 1, we know that when market
preferences are known and aggregate demand is ran-
dom, the aggregate fill rate is a weighted average of
the individual product variant fill rates. However,
this is not the case when market preferences are

Table 1 IPAD Pricing and Cost Data

Product variant Sale price ($) Total cost ($) Profit ($) Margin %

W,WO,16GB 499.00 229.35 269.65 54.0
W,WO,32GB 599.00 258.85 340.15 56.8
W,WO,64GB 699.00 317.85 381.15 54.5
W,3G,16GB 629.00 257.65 371.35 59.0
W,3G,32GB 729.00 287.15 441.85 60.6
W,3G,16GB 829.00 346.15 482.85 58.2
B,WO,16GB 499.00 229.35 269.65 54.0
B,WO,32GB 599.00 258.85 340.15 56.8
B,WO,64GB 699.00 317.85 381.15 54.5
B,3G,16GB 629.00 257.65 371.35 59.0
B,3G,32GB 729.00 287.15 441.85 60.6
B,3G,16GB 829.00 346.15 482.85 58.2

Table 2 Profits Comparisons When Product Variant Fill Rates are Set at 70%

Aggregate fill rate 40% 45% 50% 55% 60% 65% 70%

Random Market Preference Fixed N 8,604.347 8,511.438 8,058.46 7,162.098 5,725.084 3,612.285 628.293
Random N, Known Market Preference 21,916.43 21,916.43 21,916.43 21,916.43 21,916.43 21,916.43 21,916.43
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random and aggregate demand is fixed. In order to
illustrate the results for this case, we conducted a set
of numerical experiments and the results are shown
in Figure 3. The results are generated by fixing the
individual product variant fill rate at 80% and varying
the aggregate fill rate in the range of 40–80%. For each
parameter setting, we tracked the imputed aggregate
fill rates and product variant fill rates when optimiz-
ing profits.4

It is obvious that across the set of results presented
in Figure 3, the imputed expected aggregate fill rate is
strictly less than the minimum expected product variant
fill rate. This result can be explained analytically as fol-
lows. Consider the 3 module product structure that
was the focus of the previous section. The expected
aggregate fill rate takes the formP

i

P
j

P
k E MinðSijk; �NPijkÞ
� �
�N

ð18Þ

where Pijk and Sijk are the succinct forms of
P1
n1
P2
n2
P3
n3

and Sn1;n2;n3 , respectively. The individual
fill rate for product Sijk takes the form

E
MinðSijk; �NPijkÞ

�NPijk

" #
: ð19Þ

There are 12 terms in the sum in expression (18) for
aggregate fill rate. To show the crux of the argument
in the simplest possible manner, first consider the
special case when the unit prices of the product
variants are the same, and so are the unit costs.
Then by symmetry, Sijk ¼ S for all triples i, j, k and
all the random variables Pijk �P have the same
distribution. So we can then write the aggregate fill
rate as

12
E MinðS; �NPÞ� �

�N
¼ E MinðS; �NPÞ� �

�N=12
ð20Þ

and each individual fill rate as

E
MinðS; �NPÞ

�NP

� �
: ð21Þ

Now it follows from results in Chen et al. (2010)
and Banerjee and Paul (2005) that

Figure 3 Imputed Fill Rate Varied with the Aggregate Fill Rate When Individual Fill Rate is Set at 80%
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Figure 2 Comparison of Stocking Levels and Profit When Constraints are not Binding
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E
MinðS; �NPÞ

�NP

� �
� E½MinðS; �NPÞ�

�NEP
¼ E½MinðS; �NPÞ�

�N=12

ð22Þ
Thus, in the special case when all the modules have
identical costs and prices and preferences are
symmetric, the aggregate fill rate is smaller than
each individual fill rate. In fact, the difference can
be quite significant. The main driver of this differ-
ence is the fact that 1/P—which influences the
individual fill rates but not the aggregate fill rate—is
a very volatile random variable. Specifically, it can
be verified that 1/P has a long-tailed distribution.
The long-tailed behavior of 1/P stretches out the tail
of the random variable MinðS; �NPÞ

�NP
and inflates expected

individual fill rates relative to the short-tailed aggre-
gate fill rate.

OBSERVATION 3. Structure of Market Preferences.

A final observation relates to how the structure of
market preferences influences the stocking levels and
optimal profits. To examine this issue, we focus on a
setting where market preferences are known and
aggregate demand is random. In this case, we allow
the market preferences to be symmetric (i.e., equal
across all options); price dependent (i.e., inversely
proportional to price); and arbitrary (i.e., unbalanced
across the options). For the price-dependent setting,
we only vary the preferences for the storage options
since this is the main factor which contributes to a
pricing variations for the IPAD’s. Hence, for this
preference structure, we set p31 ¼ 0:60; p32 ¼ 0:30;
and p33 ¼ 0:10. In the unbalanced case, we set the
market preferences to be p11 ¼ 0:30; p12 ¼ 0:70;
p21 ¼ 0:70; p22 ¼ 0:30; p31 ¼ 0:60; p32 ¼ 0:30; and
p33 ¼ 0:10.
For each of these three settings of the preference

structure, we generate three sets of results depending
upon the minimum aggregate fill rate and minimum
individual fill rates: (a) the minimum aggregate fill
rate is set at 90% while the minimum individual fill
rate is set at 20%; (b) the minimum aggregate fill rate
is set at 70% while the minimum individual fill rate
is set at 40%; and (c) the minimum aggregate fill
rate is set at 20% while the minimum individual
fill rate is set at 90%. The detailed results for stocking
levels and optimal profits for each of these parameter
settings are shown in Figure 4 below.
The results shown in Figure 4 indicate that there is

very little difference between the total product stocks
across the three market preference structures regard-
less of the type of preference structure and the set-
tings for the parameters related to the minimum
aggregate and individual fill rates. A symmetric

market preference structure, on the other hand, leads
to the greatest profits followed by when market pref-
erences are inversely proportional to price and this
result obviously holds across all parameter settings
for the minimum aggregate and individual fill rates.
Since symmetric preferences could be construed as
providing less information than asymmetric prefer-
ences,5 this result is somewhat counter-intuitive. On
the other hand, symmetric preferences lead to bal-
anced demands and balanced stocks across product
options. Typically, it is easier to manage a homoge-
neous assortment of products than a heterogeneous
one and balanced assortments may be expected to
lead to higher profits. This may counteract the

117.74 117.66 117.626

218.89225
202.91791

187.9397

50.00 

100.00 

150.00 

200.00 

250.00 

Symmetric Preference Price Dependent 
Preference

Unbalanced Preference

118.17 118.24 117.946

218.6416
202.65264

187.71112

50.00 

100.00 

150.00 

200.00 

250.00 

Symmetric Preference Price Dependent 
Preference

Unbalanced Preference

Total Stocking Levels Adjusted Profit (in 100)

114.37 114.34 112.534

219.07669
203.08385

188.31395

50.00 

100.00 

150.00 

200.00 

250.00 

Symmetric Preference Price Dependent 
Preference

Unbalanced Preference

Setting (a)

Setting (c)

Setting (b)

Total Stocking Levels Adjusted Profit (in 100)

Figure 4 Impact of Asymmetric Preference

Paul, Tan, and Vakharia: Planning for Modular Products
Production and Operations Management 24(7), pp. 1033–1053, © 2015 Production and Operations Management Society 1043



negative informational aspect of the symmetric
preferences model.
This concludes a discussion of our numerical exper-

iments and in the next section, we discuss several
extensions to our benchmark model.

5. Extended Models

We now consider extensions of the benchmark model
to further assess the robustness of our key findings
and to show how the single period model can be
extended in a multiple-period setting. Without loss of
generality, we investigate a stylized product setting
where a single product family is assembled using two
modules A1 and A2. One unit of module A1 and one
unit of module A2 combine to form one unit of end
product. There are two options for module A1,
denoted by A1

1 and A1
2, and two options for module

A2, denoted A2
1 and A2

2. So there are four possible vari-
ants of the end product, which we can represent as
A1

1A
2
1, A

1
1A

2
2, A

1
2A

2
1, and A1

2A
2
2. The analysis in this sec-

tion demonstrates that the value of information on
preference continues to dominate the value of infor-
mation on aggregate demand when the preference
over options are correlated, when demand is price
dependent with substitution and when demand and
options follow unimodal distributions.

5.1. Correlated Preferences for Options
Consumers could have correlated preferences over
options for the modular product. For example, it is
reasonable to assume that a customer who favors
64GB storage size is more likely to choose 3G with
Wi-Fi over Wi-Fi only as the wireless chip technol-
ogy when choosing an iPad. We describe a stylized

model to capture the correlation between customer
preferences across options. Suppose each module
consists of two options, A1 2 fA1

1 ¼ A; A1
2 ¼ ag and

A2 2 fA2
1 ¼ B; A2

2 ¼ bg, where the capital letter
stands for the higher quality option. The market
preferences for higher quality options are denoted
by P1 and P2, respectively. Without loss of general-
ity, we assume P1 and P2 follow the same distribu-
tion P taking values in the interval (0,1). Correlations
between the preferences for the higher quality
options in the two modules are induced by imposing
the constraints

PðA1
1 ¼ AjA2

1 ¼ BÞ ¼ PðA2
1 ¼ BjA1

1 ¼ AÞ
¼ PðA1

2 ¼ ajA2
2 ¼ bÞ ¼ PðA2

2 ¼ bjA1
2 ¼ aÞ ¼ q;

where 0 < q < 1. Note that the conditional probabil-
ity of choosing a higher quality option for a feature
changes depending on the quality level of the
option that is selected for the other feature; it is this
that induces a correlation between option prefer-
ences across product features. The proportion of
choosing product {{A,B},{A,b},{a,B},{a,b}} can be
seen to be equal to (Pq,P(1 � q),(1 � P)(1 � q),
(1 � P)q), respectively. In the optimization model,
we use the proportion derived here to replace the
product form of preference where we assume con-
sumers’ preference over options are independent in
the basic model (Figure 5).
We observe that the expected profit increases

monotonically with q in both the random demand
and the random preference cases, while the stocking
levels increase slightly. To assure ourselves of the
robustness of this effect, we constructed and tested
another model of correlated preferences. In this
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Figure 5 Comparison of Profit and Stocking Quantity with Correlated Preference

Notes: The results above are robust to the changes of parameters. For illustration purpose, we set the price parameters as follows: {k11 = 7, k12 = 5,
k21 = 5, k22 = 4} and the corresponding costs are: {c11 = 4, c12 = 3, c21 = 2, c22 = 1}. For the case of random preference with fixed aggregate demand,
we set N = 100 and assumed the market preferences are uniformly distributed. In the case of random demand with fixed preference, we let N be
uniformly distributed with parameters [0,200] and P = 1/2
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model, we allowed the preferences between option 1
of modules 1 and 2, and between option 2 of
modules 1 and 2, to be correlated uniformly distributed
random variables. We note that in the correlation
model constructed earlier correlation was induced by
explicitly manipulating conditional probabilities of
choosing an option of one feature given an option
choice of another feature; here we model correlation
at the level of the joint distribution of the preferences
for a pair of options spanning two distinct modules
—the qualitative idea is the same but the mathemati-
cal levers used are different in the two models of
correlation. As we increased the coefficient of corre-
lation, optimal stocking levels as well as optimal
expected profits, again increased. This is in contrast
to the general rule proved by Van Mieghem and
Rudi (2002) for newsvendor networks characterized
by multivariate normal demands whereby “the value
of the system decreases in correlation” (p. 328) and
demonstrates that there are factors at play in our
model that go beyond conventional risk-pooling
effects.
In our case, the intuition is that the sum of the vari-

ances of the product variant demands increases com-
pared with the case where preferences are
independent across modules, generating the need for
more inventory to attain the same service level. To see
that the sum of variances of product demands
increases, note that VarðY1 þ . . . þ YnÞ ¼Pn

i¼1 VarðYiÞ þ P
i;j CovðYi;YjÞ, where Yi are product

variant demands. Now the marginal distributions of
Yi remain unchanged in our correlation model, and
hence the variance terms remain unchanged; hence
the change in VarðY1 þ . . . þ YnÞ is driven entirely
by the covariance terms.
The fact that optimal profits also rise, however, is

somewhat counterintuitive since one would expect
the impact of an increase in operational variability
to be detrimental. For example, it is well known
that an increase in variance—other things remaining
the same—results in a decrease in expected profit
in the newsvendor model, for large classes of
demand distributions (see Van Mieghem and Rudi
(2002), Proposition 3, for a generalization of the det-
rimental impact of variability on the objective func-
tion value in a newsvendor network model.
However, the case when correlation increases when
individual variance terms are unchanged is some-
what different. It is well known that in the case of a
joint distribution, zero correlation corresponds to
maximum entropy or minimum information,
compared with the case of positive correlation.
Therefore, an increase in correlation may be
interpreted as an increase in information which
may be expected to have some positive impact—at
least when compared with the baseline case of zero

correlation. The intuition that an increase in
correlation should be detrimental is very model
specific. An example of a setting in which an
increase in correlation is beneficial may be found in
project management. In a parallel project with sto-
chastic activity times, project completion time is sto-
chastically decreasing in the correlation between
every activity pair, given that the activity durations
are multivariate normal.

5.2. Price-Dependent Demand and Demand
Substitution
In the benchmark model, we assume the aggregate
demand is identical across the modular product fam-
ily. Now we extend the benchmark model to include
the following features:

(1) We incorporate price-dependent demand,
with a downward sloping demand curve.

(2) We model cross-price demand substitution.

As before, let cn1;n2 and kn1;n2 represent the unit cost
and unit price, respectively, of a product variant with
options A1

n1
and A2

n2
. We shall let the demand for each

product variant conform to the multiplicative price-
dependent random demand model (see Huang et al.
2013) with stock-out-based demand substitution (see
Bish et al. 2012).
Specifically, we let the demand of product variant

A1
n1
A2

n2
be D̂n1;n2 � P1

n1
P2
n2

where Pk
nj

are random vari-
ables taking values in (0,1) and summing to 1, and
D̂n1;n2 is given by the following formula:

D̂n1;n2 ¼ �D�an1;n2kn1;n2 þ
X2
m1¼1

X2
m2¼1

bm1;m2
km1;m2

þ � ð23Þ

where mi 6¼ ni for all i. The first two terms in the for-
mula for D̂n1;n2 capture a downward sloping linear
demand curve for each product, where an1;n2 reflects
the own-price sensitivity. The third term captures
demand substitution via cross price effects—the
demand for a given product is increasing in the price
of all the other products, as in Bish et al. (2012). The
parameter bm1;m2

[ 0 reflects the substitutability
between the product variants where a higher value of
bm1;m2

implies a higher substitutability effect between
the product variant and vice versa. We impose the
condition

P2
m1¼1

P2
m2¼1 bm1;m2

� an1;n2 to ensure the
impact of own price change is larger than the impact
of competing product price change. The random com-
ponent e�K(	) represents the randomness in demand
with its mean equals to zero.
Now to obtain an explicit algebraic formulation for

this model, we use an approximate formula for
expected aggregate fill rate that is common in the
operations management literature—that is Expected
Fill Rate = (Expected Filled Demand)/(Expected
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Demand). With this simplification, the aggregate fill
rate constraint in the extended model is specified by

E
P2

n1¼1

P2
n2¼1 MinðSn1;n2 ; D̂n1;n2P

1
n1
P2
n2
Þ

h i
E½P2

n1¼1

P2
n2¼1 D̂n1;n2P

1
n1
P2
n2
� � b ð24Þ

In both the random demand and random prefer-
ences models we observed that the average profit
increased monotonically and linearly with bi;j keeping
all the other parameters fixed. On the other hand
average profit decreased monotonically and linearly
with ai;j keeping all the other parameters fixed. The
slopes of the graph of average profit against bi;j were
nearly identical in both random demand and random
preferences cases, whereas the decrease in average
profit with ai;j was considerably steeper in the case of
random preferences, compared with the case of ran-
dom demand. Both these observed effects are, of
course, in complete accord with intuition. We also
found that the average optimal profit in the case when
demand was random and preferences fixed domi-
nated the average optimal profit in the case when
demand was fixed and preferences random, as in the
benchmark model. We reiterate the implication of this
finding: market research targeted at eliciting con-
sumer preferences for product features is in general a
much more powerful lever than market research
aimed at characterizing aggregate demand.

5.3. Unimodal Distributions
We now extend our analysis to more general classes
of probability distribution. It is interesting to analyze
stocking level when preferences and aggregate
demand are unimodally distributed, capturing a situ-
ation when the firm possesses some information
about relative preference and market demand, in con-
trast to the case of uniform distribution, which cap-
tures a situation when the firm has very little
information.
We start our analysis when the preference is unimo-

dally distributed and the aggregate demand is known.
A random variable with support [0, 1] and continuous
distribution function F(x) is defined to be unimodal if
there is a point v in [0, 1] such that F(x) is convex on
[0,v] and concave on [v,1]. Differentiating the distribu-
tion function yields the density function, so a random
variable is unimodal if it has a density function that is
increasing up to v and decreasing from that point
onwards. Generally, v is called the vertex, or the mode,
of the distribution. Now for a very right-skewed
density function, the vertex tends to lie very close to 0
and the random variable has a distribution function
that is approximately concave. On the other hand, if
the density function is very left-skewed, the vertex
tends to be very near 1 and the distribution function is

approximately convex. So from this point of view,
concave and convex distribution functions represent
the limiting distribution functions for right-skewed
and left-skewed random variables, respectively. To
provide a concrete example, we assume D = N = 100
and model the market preferences P1

1and P2
1 with

density functions as gp1
1
ð	Þ ¼ 2 � 2xð0 � x � 1Þ

and gP2
1
ð	Þ ¼ 2xð0 � x � 1Þ, respectively, which

results in P1
2 ¼ ð1 � P1

1Þ and P2
2 ¼ ð1 � P2

1Þ being
distributed as g1�P1

1
ð	Þ ¼ 2xð0 � x � 1Þ and

g1�P2
1
ð	Þ ¼ 2 � 2xð0 � x � 1Þ, respectively. Thus, we

are able to fully operationalize the objective function
and constraints.
Now we consider the case where the firm forms a

reliable estimate of the most likely value of market
demand (i.e., mode of the market demand distribu-
tion) with known preferences. We study the corre-
sponding change in optimal stocking level, compared
with the case when demand is uniformly distributed.
For convenience, let us consider the specific case
where N has the unimodal density function
gDð	Þ ¼ � 3xðx� 200Þ

4;000;000 ð0 � x � 200Þ with mode 100. We
assume the preference over options equal to
P1
1 ¼ P2

1 ¼ 1
2, such that both cases share the same

expected value of market demand. The results from
the numerical experiment are summarized in the fol-
lowing Figure 6.
We briefly describe the most interesting inferences

to drawn from our numerical experiments. To begin
with, focusing on the comparison between unimodal
demand with fixed preference and unimodal prefer-
ence with fixed demand, we find our main qualitative
insight still holds. That is, optimal profits increase
substantially (i.e., the profits are about 1.5 times
higher) when preferences are fixed rather than un-
imodally distributed. Further, we find a considerable
increase in optimal profit as well as a reduction in
optimal stock levels compared with the case of uni-
formly distributed preferences. Given that unimodal
market preferences convey more information than
uniform market proportions, this extra information
can be judiciously used to reap savings in procure-
ment costs. Managerially speaking, this result
suggests that the company could save substantial
costs by getting customer preferences information.

5.4. Infinite Horizon Model
We extend the benchmark model to a stationary infi-
nite horizon setting. The expected fill rate is the
expected fraction of demand served immediately
from on-hand inventory, averaged over the infinite
horizon. We call the time between two successive
ordering opportunities in the horizon a period. The
options ordered in period t are available to satisfy
market demand in period t + L, where the lead time L
is a non-negative integer number of periods. The
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company is assumed to follow a base-stock policy for
each modular product A1

n1
A2

n2
with order-up-to level

Sn1;n2 .
The chronology of events is as follows: at the begin-

ning of each period, replenishment shipments are
received, backlogged demand is filled to the maxi-
mum possible extent from existing stock, then inde-
pendent and identically distributed (i.i.d.) demand
occurs during the period which will be satisfied from
the available inventory or else backlogged, and finally
a replenishment order is placed to bring next period’s
beginning inventory level up to Sn1;n2 .
We introduce a unit holding cost h and a unit back-

logging cost b. The objective function is to maximize
the total discounted expected profit over the infinite
horizon subject to an aggregate fill rate constraint and
individual fill rate constraints over the infinite horizon.
Our aim is to show that there is a myopic optimal solu-
tion to the infinite horizon problem. To this, we first
note that the problem with the fill rate constraints
deleted reduces to a multi-product newsvendor prob-
lem over the infinite horizon. It is a standard result (see
Theorem 4.7 (p. 100) and the discussion on pp. 99 and
100 of Snyder and Shen (2011)) that the optimal solu-
tion to the single-product newsvendor problem over
the infinite horizon is a stationary base-stock policy.
Since the objective function in our problem is separable
in the stock levels of the individual products, it follows
that the optimal solution to the unconstrained version
of our multi-period problem over the infinite horizon
is a stationary base-stock policy. For this reason, it is
reasonable to search for the optimal solution to the
constrained problem in the class of stationary base-
stock policies. To find the optimal stationary base stock
policy for the constrained problem, we need to sim-
plify the expected infinite horizon fill rate constraint.
Let Hn1;n2 denote the on-hand inventory level of

product A1
n1
A2

n2
at the start of period t, and let DtP1

n1
P2
n2

denote the total demand for product A1
n1
A2

n2
during

period t. We assume aggregate stationary demand
over the horizon, so Dt ¼ D for all t. Note that the
stocking level Sn1;n2 in the constraints in the single per-
iod model is now replaced by the on-hand inventory
level Hn1;n2 . We begin with the following characteriza-
tion of expected fill rate over the infinite horizon.

PROPOSITION 2.

(a) Satisfying the individual fill rate constraint over
the infinite horizon reduces to

E MinðHn1 ;n2
;DP1

n1
P2
n2
Þ

� �
E½DP1

n1
P2
n2
� � bn1;n2 .

(b) Satisfying the aggregate fill rate constraint over
the infinite horizon reduces toP2

n1¼1

P2
n2¼1 E MinðHn1;n2 ;Dp1n1p

2
n2
Þ

h i
� bE½D�.

PROOF. Proof is provided in the Appendix. h

Note that the random variables Hn1;n2 are identical
and independent from period to period, by assump-
tion; the same fact applies to aggregate demand D.
Therefore, Proposition 2 implies that the fill rate con-
straints over the infinite horizon reduce to satisfying a
set of identical constraints in every period of the hori-
zon; let us call these constraints “modified fill rate con-
straints” since they take the form EY

EX � b which is not
equivalent to a single period fill rate constraint
E(Y/X) ≥ b. We note that these modified fill rate con-
straints can be satisfied by a suitable stationary policy.
Hence the optimal stationary policy for the constrained
problem can be solved by implementing the following
procedure. First compute the optimal base-stock level
for each product in the unconstrained problem. If these
stock levels satisfy the modified fill rate constraints,
then the stock levels are optimal. If not, escalate each
stock level until all the modified fill rate constraints are
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Uniform Demand Fixed Preference Uniform Preference Fixed Demand

Figure 6 Comparison of Profit and Stocking Quantity with Different Randomness

Notes: The results above are robust to the changes of parameters. To focus on the effect of randomness in demand and preference, we set price and
cost parameters equal across product variants, which equals to 10 and 6 respectively. And we set both aggregate and individual fill rates at 60%. For
both cases involving fixed demand, we set N = 100
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satisfied. The resulting stock levels constitute a station-
ary optimal solution to the constrained problem.
We can state the single period problem as follows

(we set the backlogging cost to zero since we have
imposed fill rate constraints, which represent
imputed shortage costs).

Maximize SP¼
X2
n1¼1

X2
n2¼1

ðkn1;n2 �cn1;n2ÞEðDp1n1p
2
n2
Þ

h i

�1

2
h
X2
n1¼1

X2
n2¼1

kn1;n2E½Hn1;n2 � ð25Þ

subject to the fill rate constraints

E MinðHn1;n2 ;Dp1n1p
2
n2
Þ

h i
� bn1;n2E Dp1n1p

2
n2
Þ

h i
8n1; n2

ð26Þ
X2
n1¼1

X2
n2¼1

E MinðHn1;n2 ;Dp1n1p
2
n2
Þ

h i
� bE½D� ð27Þ

Since we assume complete backlogging, the
expected revenue per period is fixed (being equal to
the expected demand multiplied by the margin per
product) and the objective function reduces to mini-
mizing expected holding cost per period:

Minimize SP ¼ 1

2
h
X2
n1¼1

X2
n2¼1

kn1;n2E½Hn1;n2 � ð28Þ

To solve this problem, we use the result in Proposi-
tion 3 according to which we need to compute the
distribution of Hn1;n2 ¼ maxðSn1;n2 � Kn1;n2 ; 0Þ, where
Kn1;n2 denotes the total lead time demand of product
A1

n1
A2

n2
.

When the lead time is positive, the on-hand inventory
at the start of each period is a random variable. The fol-
lowing proposition characterizes this random variable.

PROPOSITION 3. The on-hand inventory level at
any review instant for a product with order-up-to level
S and lead time demand Λ is the random variable
H = max(S � Λ,0).

PROOF. Proof is provided in the Appendix. h

To apply this result to our problem, we need to com-
pute the distribution of Y ¼ maxðSn1;n2 � Kn1;n2 ;XÞ
where X is any random variable independent of Sn1;n2
and Kn1;n2 . We shall consider the case of a demand
distribution with a finite support, since we conduct
our numerical sensitivity analysis for uniformly
distributed demand. So the lead time demand for each
end-product variant has a finite upper bound ��. There
are two cases to consider.

CASE 1: ��� Sn1;n2 . We have

ProbðY� tÞ ¼ ProbðSn1;n2 � Kn1;n2 � tÞProbðX� tÞ
¼ ProbðKn1;n2 � Sn1;n2 � tÞProbðX� tÞ:

We need to reduce this to the case when X = 0 with
probability 1. Making the substitution, we get the
distribution function of Hn1;n2 :

ProbðHn1;n2 � tÞ ¼ ProbðKn1;n2 � Sn1;n2 � tÞ ð29Þ
Now we have

ProbðMinðHn1;n2 ;Dp1n1p
2
n2
Þ� tÞ

¼ ProbðHn1;n2 � tÞProbðDp1n1p
2
n2
Þ� t

¼ ProbðKn1;n2 � Sn1;n2 � tÞProbðDp1n1p
2
n2
Þ� t:

Denoting the distribution of Kn1;n2 by J(.), we get

E½MinðHn1;n2 ;Dp1n1p
2
n2
Þ� ¼

Z ��

0

Fn1;n2ðxÞJðSn1;n2 � xÞdx
ð30Þ

Note that J(.) is the L-fold convolution of Dp1n1p
2
n2

and Fn1;n2 denotes the distribution function of the
demand for product A1

n1
A2

n2
in one period.

CASE 2: �� [ Sn1;n2 . In this case, the same method as
the one in Case 1 can be applied except that
Hn1;n2 ¼ maxðSn1;n2 � Kn1;n2 ; 0Þ takes a different form.
In case, 1, we have Hn1;n2 ¼ maxðSn1;n2 � Kn1;n2 ; 0Þ ¼
Sn1;n2 � Kn1;n2 since Sn1;n2 [ Kn1;n2 with probability 1.

We provide complete algebraic details for both
cases for a concrete problem instance in the appen-
dix. In both cases, we set lead time L = 1 and the
results are summarized in Table 3. Optimal stocking
levels are roughly twice that in the zero lead time
single period model. This is what one would expect;
it is well-known that the “vulnerable window” in a
periodic review model with L = 1 period and period
length T = 1 is L + T = 2 periods, which is twice that
in a single period model. The results are shown in
the above table. The variance of the observed results
from a ratio of 2 is explained by the fact that the
objective functions in the two models were some-
what different; the single period model incorporated
lost sales in contrast to complete backlogging in the
infinite horizon model. Finally, we note that for every
fill rate level, the stocking quantity in the multiple
period model is significantly higher with random
preference than with random aggregate demand.
Note that higher stocks directly lead to lower
expected profit in the multiple period model. So we
have once again verified the principle that accurate
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information on consumer preferences (captured by
fixed p in our model) pays greater dividends than
accurate information about aggregate demand
(captured by fixed N in our model.

6. Concluding Remarks

In this paper, we studied the problem of determining
optimal stocks of the end-product variants in a single
product family, with the aim of maximizing expected
profit subject to fill rate constraints. We modeled two
distinct sources of uncertainty: random aggregate
product demand spanning all possible modular com-
binations, and unknown market preferences for vari-
ous options at the level of an individual module. We
applied our analytics to the case of tablet computers
in the iPad series. We used industry component cost
and end-product pricing data and hypothetical
demand and market preference distributions to
derive optimal base-stock levels for iPad end-product
variants. We gleaned several insights from the sensi-
tivity analysis, clarifying the interplay between the
shape of market preferences for modular options and
aggregate demand variability on the one hand, and
optimal stocking levels, fill rates, and expected profits
on the other. Through extensive computational analy-
sis, we find that precise estimates of market prefer-
ences for various modular options constitute valuable
information that goes beyond the usefulness of fore-
casts of aggregate market demand. From a practical
perspective, this might be indicative of another classic
marketing-operations trade-off. Offering more
options for consumers would be preferred by market-
ing managers since this would reach more consumers
and hence, enhance product sales. On the other hand,
obtaining more accuracy in forecasts would decline
when the number of options is larger. Hence, from an
operational perspective, it would be preferred to limit
option choices (so that better forecasts can be
obtained) since this would lead to lower stocking
costs and hence, higher profits.
We briefly sketch some ideas for future research

suggested by our work in this paper. We focused for
the most part on one source of uncertainty at a time:

random aggregate demand, or random market prefer-
ences. We did obtain some idea of stocking levels and
fill rates both aggregate demand and preferences were
simultaneously random, via Monte Carlo simulation.
We observed that optimal stocking levels were lower,
and the optimal expected profit and fill rates were
smaller, than when there was a single source of
randomness. We modeled randomness in options
preferences via random spacings from a uniform
distribution, thereby imposing some measure of homo-
geneity on market preferences for the various options
of a given module. A more explicitly heterogeneous
model that we might compare the present results
against would be one in which options preferences are
elicited as random spacings from a skewed distribu-
tion on the unit interval. Our sensitivity analysis was
based on optimizing with respect to uniformly distrib-
uted random demand; one might wonder whether any
of our findings are tied to this distributional assump-
tion. We did not tackle the finite horizon version of the
problem, choosing to address the limitations of the sin-
gle period model partway with the help of a tractable
infinite horizon model in which we considered only
the class of stationary base-stock policies. Situating the
same problem in a finite horizon model—which one
might argue is the true state of the world—would
introduce serious complications and require new algo-
rithms and computational procedures outside the rep-
ertoire of the present paper. Finally, we ignored stock-
out-based substitution by customers. An example of
recent research that models this feature is Honhon and
Seshadri (2013), who analyze a model with consumer-
driven substitution and random consumer preferences;
although their model is quite different from ours, their
focus on the contrast between fixed and random pref-
erences or proportions is very similar to ours.
This paper adds to the rich vein of research into the

management of modular products, a body of work
spanning at least three distinct streams in the literature:
components planning for ATO systems with the
emphasis on upstream requirements planning, assort-
ment planning for horizontally and vertically differenti-
ated products with the focus on selecting an assortment
of products from a large set of candidate products
jostling for scarce retail shelf-space, and the many
variations of the multiple-product newsvendor model.
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Table 3 Comparison of Stocking between Single Period and Multi-Period

Fill rate (%)

Single period Multi-period

Random
preference

Random
demand

Random
preference

Random
demand

60 100.80 119.34 204.00 186.65
65 103.63 122.89 221.80 196.67
70 117.18 135.74 241.05 206.90
75 132.54 147.52 262.25 218.29
80 150.36 158.62 268.20 231.31
85 171.78 169.27 314.32 246.74
90 199.14 179.67 349.71 266.11
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Appendix A. An Objective Function in
Fixed Aggregate Demand and Random
Market Preferences
Recall that we denoted the distribution function of
P1
n1
P2
n2
. . .PM

nM
by Gn1;n2;...;nMðxÞ and the distribution

function of DP1
n1
P2
n2
. . .PM

nM
by Hn1;n2;...;nMðxÞ.

We know from the distribution theory of spacings
that the distribution function of each uniform spac-
ing random variable in the product P1

n1
P2
n2
. . .PM

nM
is

of the form 1 � ð1 � xÞn�1 when there are n differ-
ent modular options. This knowledge is sufficient to
derive the distribution function H0

n1;n2;...;nM
ðxÞ of

NP1
n1
P2
n2
. . .PM

nM
. Some manipulative algebraic work

yields the following explicit expression for
H0

n1;n2;n3
ðxÞ:

H0
n1;n2;n3

ðxÞ ¼ x

N
� x

N
þ ln2 x

N

� 	
þ 2

� 	
0\x\N

Observing that the random variable
MinðSn1;n2;n3 ;DP1

n1
P2
n2
P3
n3
Þ takes only non-negative val-

ues, we use the formula of E½X� ¼ R1
0 PðX� xÞdx

where X�H(	) to simplify the expression. After some
calculation, this simplifies to

E MinðSn1;n2;n3 ;NP1
n1
P2
n2
P3
n3
Þ

h i
¼
Z 1

0

1�Hn1;n2;n3ðxÞdx

¼
Z Sn1 ;n2 ;n3

0

1� x

N
� x

N
þ ln2 x

N

� 	
þ 2

� 	
dx

Appendix B. Derivation of Stylized
Model with Uniform Distribution
To facilitate the readers to use our model in other
research settings, we provide technical details on how
to reformulate the optimization problem. For illustra-
tion purpose, we assume there is a single product
family with four possible variants of the end product
A1

1A
2
1, A

1
1A

2
2, A

1
2A

2
1 and A1

2A
2
2. One unit of module A1

and one unit of module A2 combine to form one unit
of end product. There are two options for module A1,
denoted by A1

1 and A1
2, and two options for module

A2, denoted A2
1 and A2

2. One can solve a more general
problem by following the similar techniques with
evolving algebraic steps. Based on the above descrip-
tion, the firm’s profit maximization problem is as
follows:

Maximize SP ¼ E
X2
n1¼1

X2
n2¼1

kn1;n2MinðSn1;n2 ;DP1
n1
P2
n2
Þ

" #

�
XN1

n1¼1

XN2

n2¼1

cn1;n2Sn1;n2

subject to:

E

PN1

n1¼1

PN2

n2¼1 MinðSn1;n2 ;DP1
n1
P2
n2
Þ

D

" #
� b;

E
MinðSn1;n2 ;DP1

n1
P2
n2
Þ

DP1
n1
P2
n2

" #
� bn1;n2 ; 8n1; n2

Sn1;n2 � 0: 8n1; n2
We denote the distribution function of DP1

n1
P2
n2

by
Hn1;n2ðxÞ. We first focus on the case of fixed aggregate
demand with uniform preference over options. The
market preferences of P1

1 (and P2
1) are uniformly dis-

tributed (0,1) random variables, then it follows that
P1
2 ¼ 1 � P1

1 (P2
2 ¼ 1 � P2

1) are also uniformly dis-
tributed random variables. Thus, we can characterize
Hn1;n2ðxÞ ¼ x

N
ð1 � ln x

N
Þ; x 2 ½0;N�, where N repre-

sents the fixed aggregate demand. The objective func-
tion can be simplified as,

XN1

n1¼1

XN2

n2¼1

kn1;n2

Z Sn1 ;n2

0

Hn1;n2ðxÞdx� cn1;n2Sn1;n2

� �

¼
XN1

n1¼1

XN2

n2¼1

kn1;n2Sn1;n2ð4N � 3Sn1;n2 þ 2Sn1;n2 ln
Sn1 ;n2
N

Þ
4N

� cn1;n2Sn1;n2

Similarly, we can simplify the aggregate fill rate
constraint as,

E
PN1

n1¼1

PN2

n2¼1MinðSn1;n2 ;NP1
n1
P2
n2
Þ

h i
N

¼
PN1

n1¼1

PN2

n2¼1Sn1;n2ð4N�3Sn1;n2 þ2Sn1;n2 ln
Sn1 ;n2
N

Þ
4N

2
�b

For the individual fill rate, we resort to the
technique that we develop in Equation (9),

E
MinðSn1;n2 ;NP1

n1
P2
n2
Þ

NP1
n1
P2
n2

" #

¼ Hn1;n2ðSn1;n2Þ þ Sn1;n2

Z N

Sn1 ;n2

hn1;n2ðxÞ
x

dx

¼
Sn1;n2 2þ ln

Sn1 ;n2
N

ðln Sn1 ;n2
N

� 2Þ
� �

2N
� bn1;n2 8n1; n2

Thus, we fully operationalize the optimization
problem. Next, we focus on the case when aggregate
demand is uniformly distributed and the preferences
over options are fixed. For convenience, we assume
P1
1 ¼ P2

1 ¼ 1
2 and N�Uniform(0,N). We can charac-

terize GNðxÞ ¼ x
N
; x 2 ½0;N� and Hn1;n2ðxÞ ¼ 4x

N
;
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x 2 ½0; N4 �, respectively. Thus, the objective function
can be simplified as,

XN1

n1¼1

XN2

n2¼1

Z Sn1 ;n2

0

Hn1;n2ðxÞdx� cn1;n2Sn1;n2

� �

¼
XN1

n1¼1

XN2

n2¼1

Sn1;n2 �
S2n1;n2
100

 !
� cn1;n2Sn1;n2

Next we simplify the aggregate fill rate constraint
as,

E

PN1

n1¼1

PN2

n2¼1MinðSn1;n2 ;NP1
n1
P2
n2
Þ

N

" #

¼
XN1

n1¼1

XN2

n2¼1

Sn1;n2
N

þ
Z1

4

Sn1 ;n2

N

1� 1�GN
Sn1;n2
x

� 	� �
½1�GNð4Sn1;n2Þ�dx

¼
XN1

n1¼1

XN2

n2¼1

Sn1;n2
N

þ
ð4N�Sn1;n2Þ N�4Sn1;n2þ4Sn1;n2 ln

4Sn1 ;n2
N

� �
16N

2

�b

For the individual fill rate, we again resort to the
technique that we develop in Equation (9),

E
MinðSn1;n2 ;DP1

n1
P2
n2
Þ

DP1
n1
P2
n2

" #

¼ Hn1;n2ðSn1;n2Þ þ Sn1;n2

Z N
4

Sn1 ;n2

hn1;n2ðxÞ
x

dx

¼ Sn1;n2
50

þ
4Sn1;n2 ln

N
4Sn1 ;n2

N
� bn1;n2 8n1; n2

Thus, the simplification of objective function is com-
plete

Appendix C. Proof of Proposition 1
The aggregate fill-rate constraint takes the form

X2
i¼1

X2
j¼1

X3
k¼1

Sijk
N

1þ ln
Np1i p

2
j p

3
k

Sijk

 !
� b

while the individual fill rate constraints take the form

Sijk

Np1i p
2
j p

3
k

1þ ln
Np1i p

2
j p

3
k

Sijk

 !
� bijk

for all triples (i,j,k) where i,j = 1,2, and k = 1,2,3.
When preferences are equal we have p1i p

2
j p

3
k ¼

1
2
1
2
1
3 ¼ 1

12 for all triples (i,j,k). Now it is easy to check
that when we substitute p1i p

2
j p

3
k ¼ 1

12 for each end-
product variant Sijk and take the average, we obtain
the expression for aggregate fill rate with the same

substitution p1i p
2
j p

3
k ¼ 1

12. When preferences are
unequal, the aggregate fill rate takes the form

X2
i¼1

X2
j¼1

X3
k¼1

p1i p
2
j p

3
khijk

where hijk is the fill rate attained by end-product
variant Sijk. Since

P2
i¼1

P2
j¼1

P3
k¼1 p

1
i p

2
j p

3
k ¼ 1 and

p1i � 0, p2j � 0, and p3k � 0 for all i,j,k, the claim in
the unequal preferences case follows.

Appendix D. Proof of Proposition 2
(a) Each individual fill rate constraint over the

infinite horizon is of the form

limT!þ1 E

�PT

t¼1
MinðHn1 ;n2

;DtP1
n1
P2
n2
ÞPT

t¼1
DtP1

n1
P2
n2

�
. It follows

directly from the renewal reward theorem
(Ross 1983, Theorem 3.6.1) that that limT!þ1

E

�PT

t¼1
MinðHn1 ;n2

;DtP1
n1
P2
n2
ÞPT

t¼1
DtP1

n1
P2
n2

�
¼ E½MinðHn1 ;n2

;DP1
n1
P2
n2
Þ�

E½DP1
n1
P2
n2
� .

This establishes the proposition.
(b) The proof is similar to that of (a).

Appendix E. Proof of Proposition 3
Consider a review instant t. The inventory posi-
tion at t is S, and the inventory position at t + L
is S as well. We claim that the on-hand inventory
at t + L is max(S � Λ,0). To see this, note that
everything on-order at time t will have arrived by
time t + L and no order placed after t will have
arrived at that point. Hence, if there were zero
demand during t and t + L, the on-hand inventory
at time t + L would be precisely S. In fact, the on-
hand inventory must be reduced by the lead time
demand Λ, and if the realization of Λ is larger
than S, the on-hand inventory at time t + L will
be driven to zero. Therefore, the distribution of
the on-hand inventory level at any review instant
is the distribution of the random variable max
(S � Λ,0).

Appendix F. Infinite horizon model
example
We provide complete algebraic details for the case
when demand is random and preferences are fixed
and assume: L = 1, p1n1 ¼ p2n2 ¼ 1=2 and D is uni-
formly distributed between 0 and 200. Similar steps
can be used to characterize the results when
demand is fixed and preferences are random, which
we skip here. The price parameters are the same as
in the previous sub-sections. Each of the four
end-product variants therefore has demand uni-
formly distributed over [0,50]. We have two cases to
consider.
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CASE 1: Sn1n2 [ 50. Let Z ¼ MinðHn1;n2 ;Dp1n1p
2
n2
Þ.

Define X ¼ Sn1n2 � U1; and Y ¼ U2, where U1 and
U2 are independent random variables each uni-
formly distributed over [0,50]. Then X�Hn1;n2 and
Y�Dp1n1p

2
n2
, and we have

ProbðZ�tÞ¼
ProbðY�tÞ; 0�t�Sn1n2 �50;

ProbðX�tÞProbðY�tÞ Sn1n2 �50�t�50;

t[50:

8<
:

Letting GTð:Þ denote the distribution function of any
random variable T, we have

E½MinðHn1;n2 ;Dp1n1p
2
n2
Þ� ¼

Z 1

0

GZðtÞdt

¼
Z Sn1n2�50

0

ProbðY� tÞdt

þ
Z 50

Sn1n2�50

ProbðX� tÞProbðY� tÞdt

¼
Z Sn1n2�50

0

GYðtÞdtþ
Z 50

Sn1n2�50

GYðtÞGXðtÞdt

¼ � 125

3
þ 2Sn1n2 �

S2n1n2
50

þ S3n1n2
15000

CASE 2: Sn1n2 � 50.

ProbðZ� tÞ ¼ ProbðX� tÞProbðY� tÞ; 0� t� Sn1n2 ;
0; t� Sn1n2 :




So we get

E½MinðHn1;n2 ;Dp1n1p
2
n2
Þ� ¼

Z S

0

ProbðX� tÞProbðY� tÞdt

¼
Z S

0

½1� 50� Sn1n2
50

�½1� t

50
�dt

¼ S2n1n2
100

� S3n1n2
15000

Therefore, the optimization problem is the following:

Minimize
1

2
h
X2
n1¼1

X2
n2¼1

kn1n2ðSn1n2 � 25Þ

subject to

� 125

3
þ 2Sn1n2 �

S2n1n2
50

þ S3n1n2
15000

� 25bn1n28n1; n2
X2
n1¼1

X2
n2¼1

� 125

3
þ 2Sn1n2 �

S2n1n2
50

þ S3n1n2
15000

� 100b

if Sn1n2 � 50 and

Minimize
1

2
h
X2
n1¼1

X2
n2¼1

kn1n2
S2n1n2
100

subject to

S2n1n2
100

� S3n1n2
15000

� 25bn1n28n1; n2
X2
n1¼1

X2
n2¼1

S2n1n2
100

� S3n1n2
15000

� 100b

if Sn1n2 \ 50.

Notes
1This assumption is valid in a lot of scenarios. For exam-
ple, one’s preference of a specific color has nothing to do
with the preference over other options. Later in the
extended model, we show that our main results still hold
with correlated market preferences.
2We could, of course, have chosen to specialize the general
development of the previous subsection to any other trac-
table distribution.
3http://www.isuppli.com/Teardowns/News/Pages/Mid-
RangeiPadtoGenerateMaximumProfitsforApple,iSuppliEsti-
mates.aspx (accessed date October 20, 2011).
4Although we do not show the resulting optimal retailer
profits for each experimental parameter setting, it is
worth noting that the maximum profit is obtained when
the imputed individual product variant fill rates equal
75–80% and the aggregate fill rate equals 41%. The drives
the choice of generating the results in Figure 3 where we
set the minimum individual product variant fill rates to
be at least 80% and vary the minimum aggregate fill rate.
5This is based on the classical result from information the-
ory that the uniform discrete distribution over a finite set
has greater entropy—and therefore conveys less information
—than any other discrete distribution over the same set.
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